CHAPTER 7.0
OTHER CEQA REQUIRED CONSIDERATIONS
This section discusses the additional topics statutorily required by the California Environmental Quality Act (CEQA). The topics indicate whether the proposed Project would: cause significant irreversible environmental changes; result in growth inducing impacts; or create unavoidable significant environmental impacts. A discussion of Mandatory Findings of Significance is also included. This section begins with a discussion of CEQA Guidelines, CEQA Appendix F, Energy Conservation.

ENERGY CONSERVATION

The goal of conserving energy implies the wise and efficient use of energy. The means of achieving this goal include: 1) decreasing overall per capita energy consumption; 2) decreasing reliance on fossil fuels such as coal, natural gas and oil; and 3) increasing reliance on renewable energy sources.

To assure that energy implications are considered in project decisions, CEQA requires EIRs to include a discussion of potential energy impacts of proposed projects, with particular emphasis on avoiding or reducing inefficient, wasteful and unnecessary consumption of energy (see PRC section 21100(b)(3)).

The proposed Project is a cannabis cultivation and manufacturing facility that would require 12.63 MW of electricity.

A. ENERGY BACKGROUND

The study area for energy resources includes the entire State of California. The following sections describe the electricity supply in California, and summarize California’s status in achieving statewide renewable energy goals.

California’s Energy Supply

In 2002, California established its Renewable Portfolio Standard (RPS) program to increase the annual percentage of renewable energy in the state’s electricity mix by the equivalent of at least one percent of sales, with an aggregate total of 20 percent by 2017. The California Public Utilities Commission (CPUC) subsequently accelerated that goal to 2010 for retail sellers of electricity (Public Utilities Code Section 399.15(b)(1)). Governor Schwarzenegger signed EO S-14-08 in 2008, increasing the target to 33 percent renewable energy by 2020. Specifically, California’s RPS requires retail sellers (investor-owned utilities [IOUs], electric service providers [ESPs] and community choice aggregators [CCAs]) regulated by the CPUC to procure 33 percent of their annual retail sales from eligible renewable sources by 2020. The RPS also requires retail sellers to achieve intermediate RPS targets of 20 percent from 2011-2013 and of 25 percent from 2014-2016.

In 2015, Governor Edmund G. Brown Jr. signed SB 350 (de León, 2015) into law, which increased the proportion of required total retail electricity sales from renewable resources from 33% in 2020 to 50% by December 31, 2030 (CPUC 2018). SB 350 also added RPS interim targets of 40% by December 31, 2024 and 45% by December 31, 2027. The CPUC and the California Energy Commission (CEC) are jointly responsible for implementing California’s RPS program (CPUC 2018a).

California's three large IOUs collectively served 34.76% of their 2016 retail electricity sales with renewable power. See below for a table of the of the large IOUs progress towards meeting their 50% compliance obligations in 2030. The IOU's utilize a mix of RPS resources such a wind, solar PV, solar thermal, hydroelectricity, geothermal, and bioenergy to meet their renewable procurement targets (CPUC 2018b)

Renewable Procurement Status Percentages published on the CPUC’s website in May 2018 are summarized in Table 7.0-1.
7.0 OTHER CEQA REQUIRED CONSIDERATIONS

TABLE 7.0-1
RENEWABLE PROCUREMENT STATUS PERCENTAGES

<table>
<thead>
<tr>
<th>IOU</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacific Gas and Electric</td>
<td>33%</td>
</tr>
<tr>
<td>Southern California Edison</td>
<td>28%</td>
</tr>
<tr>
<td>San Diego Gas and Electric</td>
<td>43%</td>
</tr>
</tbody>
</table>

CPUC 2018b.

California has exceeded the 8,000 MW goal for large-scale renewables with 10,500 MW added since January 2011, for a total of 17,124 MW. California’s in-state operating renewable energy capacity was 27,500 MW as of June 19, 2017. The total includes a little more than 6,000 MW of self-generation capacity, 5,800 MW of which is self-generation solar photovoltaic (PV). The state is also expected to meet the 12,000 MW goal for distributed generation by 2020 (CEC 2017).

Energy Resources

Issues related to energy use include the levels of consumption of non-renewable and renewable energy sources for the construction, operation, and reclamation of the proposed Project. Transportation energy use is related to the following factors: the efficiency of automobiles, trucks, off-road equipment, and other mobile transportation; the choice of employee travel mode (automobile, carpool, or public transit); and miles traveled for each mode. Energy would also be consumed with construction equipment and routine operation activities, and reclamation activities associated with Project.

Each of the four cultivation and manufacturing facilities proposed as part of the Trinity Cannabis Cultivation and Manufacturing Facility would require 12.63 MW of electricity annually. The Project is planning to procure electricity from IID for Phase 1 (2421 Enterprise Boulevard) and Phase 2 (Buildings A, B and C). However, IID will have to construct a new substation to serve Phase 2. Phase 1 is anticipated to be completed in September 2018 and Phase 2 has a targeted completion of October 2020.

B. ENERGY THRESHOLDS AND ENERGY RESOURCE IMPACTS

Energy Thresholds

Based on Appendix F, Energy Conservation, of the CEQA Guidelines, a project would result in significant impacts related to energy if construction or operation of the proposed facilities would result in the wasteful, unnecessary, or inefficient use of energy resources. Environmental effects may include the project’s energy requirements and its energy use efficiencies by amount and fuel type during construction, operation and reclamation; the effects of the Project on local and regional energy supplies; the effects of the Project on peak and base period demands for electricity and other forms of energy; the degree to which the Project complies with existing energy standards; the effects of the Project on energy resources; and the Project’s projected transportation energy use requirements and its overall use of efficient transportation alternatives, if applicable. The discussion of energy resources impacts collectively addresses these topics.

Energy consumption is analyzed in this EIR due to the potential direct and indirect environmental impacts associated with the project. Such impacts include the depletion of non-renewable resources (oil, natural gas, coal, etc.) and emissions of pollutants during both the construction and long-term operational phases.
Energy Consumption

Recent case law has clarified the requirements to satisfy Public Resources Code section 21100(b)(3) and Appendix F, holding that an EIR must quantify energy use during construction and operations, including energy associated with transportation associated with the project, and consider the availability of measures to reduce reliance on fossil fuels (California Clean Energy Committee v. City of Woodland (2014) 225 Cal.App.4th 173). Mere reliance on compliance with the California Building Code and other green building requirements is not sufficient to meet an agency's burden under Appendix F and Public Resources Code section 21100(b)(3).

Energy Usage

Electricity/Natural Gas Services

Imperial Irrigation District (IID), the sixth largest electrical utility in California serving more than 150,000 customers in the Imperial Valley and parts of Riverside and San Diego counties, provides electrical services to the Project area. IID controls more than 1,100 megawatts of energy derived from a diverse resource portfolio that includes its own generation, and long- and short-term power purchases. Located in a region with abundant sunshine, enviable geothermal capacity, wind and other renewable potential, IID has met or exceeded all RPS requirements to date, procuring renewable energy from diverse sources, including biomass, biowaste, geothermal, hydroelectric, solar and wind.

The Southern California Gas Company provides natural gas services to Calexico. As the nation's largest natural gas distribution utility, the Southern California Gas Company delivers natural gas energy to 21.6 million consumers through 5.9 million meters in more than 500 communities. The Southern California Gas Company’s service territory encompasses approximately 20,000 square miles throughout Central and Southern California, from Visalia to the Mexican border.

Energy Consumption

Electricity use is measured in kilowatt-hours (kWh), and natural gas use is measured in therms. Vehicle fuel use is typically measured in gallons (e.g. of gasoline or diesel fuel), although energy use for electric vehicles is measured in kWh.

The electricity consumption attributable to non-residential land uses (commercial and industrial) in the IID service area from 2012 to 2016 is shown in Table 7.0-2. As indicated, the demand has decreased since 2012.

<table>
<thead>
<tr>
<th>Year</th>
<th>Nonresidential Electricity Consumption (in millions of kilowatt hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>1,479,137,766</td>
</tr>
<tr>
<td>2015</td>
<td>1,469,839,179</td>
</tr>
<tr>
<td>2014</td>
<td>1,505,096,888</td>
</tr>
<tr>
<td>2013</td>
<td>1,503,493,373</td>
</tr>
<tr>
<td>2012</td>
<td>1,520,635,311</td>
</tr>
</tbody>
</table>

Table 7.0-2 shows the natural gas consumption attributable to non-residential land uses in the Southern California Gas Company service area from 2012 to 2016. As shown, natural gas demand has increased slightly since 2012.
Table 7.0-3 shows automotive fuel consumption in Imperial County from 2012 to 2017. As shown, automotive fuel consumption has increased in the county since 2012.

7.0.1 REGULATORY FRAMEWORK

A. STATE

California Energy Efficiency Standards for Residential & Nonresidential Buildings (Title 24)

Title 24, California’s energy efficiency standards for residential and nonresidential buildings, were established by the California Energy Commission (CEC) in 1978 in response to a legislative mandate to create uniform building codes to reduce California’s energy consumption and provide energy efficiency standards for residential and non-residential buildings. California’s energy efficiency standards are updated on an approximate three-year cycle. In 2016, the CEC updated Non-residential Title 24 standards with more stringent requirements. The 2016 standards, which went into effect on January 1, 2017, have substantially reduced the growth in electricity and natural gas use.

California Green Building Standards

The California Green Building Standards Code (California Code of Regulations, Title 24, Part 11), commonly referred to as the CALGreen Code, is a statewide mandatory construction code that was developed and adopted by the California Building Standards Commission and the California Department of Housing and Community Development. The CALGreen standards require new residential and commercial buildings to comply with mandatory measures under the topics of planning and design, energy efficiency, water efficiency and conservation, material conservation and resource efficiency, and environmental quality. CALGreen also has voluntary tiers and measures that local governments may adopt which encourage or require additional measures in the five green building topics. The most recent update to the CALGreen Code was adopted in 2016 and went into effect January 1, 2017.
7.0 CUMULATIVE IMPACT ANALYSIS

Senate Bill 1368

On September 29, 2006, Governor Arnold Schwarzenegger signed into law Senate Bill 1368 (Perata, Chapter 598, Statutes of 2006). The law limits long-term investments in baseload generation by the state's utilities to those power plants that meet an emissions performance standard jointly established by the CEC and the CPUC.

The CEC has designed regulations that:

- Establish a standard for baseload generation owned by, or under long-term contract to publicly owned utilities, of 1,100 pounds carbon dioxide per megawatt-hour. This would encourage the development of power plants that meet California's growing energy needs while minimizing their emissions of greenhouse gas emissions;

- Require posting of notices of public deliberations by publicly owned utilities on long term investments on the CEC website. This would facilitate public awareness of utility efforts to meet customer needs for energy over the long-term while meeting the state's standards for environmental impact; and

- Establish a public process for determining the compliance of proposed investments with the emissions performance standard (EPS) (Perata, Chapter 598, Statutes of 2006).

Renewable Energy Sources

Established in 2002 under Senate Bill (SB) 1078 and accelerated by SB 107 (2006) and SB 2 (2011), California's Renewables Portfolio Standard obligates investor-owned utilities, energy service providers, and community choice aggregators to procure 33 percent of their electricity from renewable energy sources by 2020. Eligible renewable resources are defined in the 2013 RPS to include biodiesel; biomass; hydroelectric and small hydro (30 MWs or less); Los Angeles Aqueduct hydro power plants; digester gas; fuel cells; geothermal, landfill gas; municipal solid waste; ocean thermal, ocean wave, and tidal current technologies; renewable derived biogas; multi-fuel facilities using renewable fuels; solar photovoltaic; solar thermal electric; wind; and other renewables that may be defined later.

On October 7, 2015, Governor Jerry Brown signed SB 350 which expanded the RPS by establishing a goal of 50% of the total electricity sold to retail customers in California per year by December 31, 2030. In addition, SB 350 includes the goal to double the energy efficiency savings in electricity and natural gas final end uses (such as heating, cooling, lighting, or class of energy uses upon which an energy efficiency program is focused) of retail customers through energy conservation and efficiency. The bill also requires the CPUC, in consultation with the CEC, to establish efficiency targets for electrical and gas corporations consistent with this goal. SB 350 also provides for the transformation of the California Independent System Operator (CAISO) into a regional organization to promote the development of regional electricity transmission markets in the western states and to improve the access of consumers served by the CAISO to those markets, pursuant to a specified process.

B. LOCAL

City of Calexico General Plan

The Public Facilities/Services Element of the City of Calexico General Plan (dated February 2007, adopted by the City on May 1, 2007) addresses public facilities and services. While the General Plan does not contain any goals, policies or objectives that directly relate to energy conservation for all sectors of development, there is an objective and two policies that relate to energy conservation for public buildings.

Goal 4.4.1 To provide a full range of the necessary public facilities and services that are convenient to users, economical, and reinforce a quality City identity.
7.0 OTHER CEQA REQUIRED CONSIDERATIONS

4.4.1.5 Public Buildings

Objective 5 City should encourage a responsible development pattern for any new public buildings, maximize the usefulness of existing buildings, and conserve energy whenever possible.

Policy 5e The City shall annually assess the energy usage of each public building and develop plans to conserve energy, including retrofitting for energy conservation where feasible.

Policy 5f All new public buildings shall be designed to be as energy efficient as is financially feasible.

7.0.2 ENVIRONMENTAL SETTING

A. PROPOSED PROJECT

The Project is a proposal to build a Cannabis Cultivation and Manufacturing Facility on approximately 8.44 acres. The Project includes an existing structure at 2421 Enterprise Boulevard (Phase 1) and four vacant parcels, the latter to be developed with three cannabis cultivation and manufacturing facilities (Phase 2). A 10,000 square foot (sq. ft.) parcel is to be created for a transportation and distribution facility. The new parcel would be carved out of the existing parcel on which 2421 Enterprise Boulevard is located. The Project includes a total of 353,480 sq. ft. Each cannabis cultivation and manufacturing facility will require approximately 3 mega-watts (MW) of electricity and the transportation and distribution facility is anticipated to use approximately 200 to 240 volts of power. Phase 1 of the Project will be served with electricity from the Imperial Irrigation District (IID). The Applicant for Trinity 341, LLC is working towards procuring electricity for Phase 2 of the Project from IID.

In order for the IID to provide electricity to Phase 2, a new 25-MW substation must be built. The City of Calexico has offered a site appropriately suited for the potential construction of a new substation. The site consists of a single parcel (APN 058-010-010) approximately 40 acres in size located southeast of the intersection of Kloké Road and Maddox Road. The substation, which requires a pad of 2.28 acres (315 feet x 315 feet) would be located in the northeast corner of the site.

The Applicant for Trinity 341 has negotiated the basic points of a partnership with the IID in which Applicant and the IID would evenly share (50/50) the cost of construction of a substation, a transmission extension and enhancements. Depending upon the source of financing, amortization schedules range from ten (10) years to twenty-five (25) years. The Applicant for Trinity 341 will be reimbursed for its share of the cost of any required oversizing through the mechanism of a Reimbursement Agreement. The Agreement would contain provisions providing: 1) The means of collection of funds from subsequent users on a kVA basis; 2) the accounting of such funds; and 3) The timing and method of disbursement to the Applicant for Trinity 341. Phase 2 will require approximately 9.63 MW or forty-eight (48%) of the capacity of the first transformer of the new substation (25 MW, @ 80% = 20 MW per IID Distribution Guidelines and four feeders of 5 MWs each) (Irwin, pers. comm., 2018b).

7.0.3 IMPACTS AND MITIGATION MEASURES

A. STANDARDS OF SIGNIFICANCE

SIGNIFICANCE CRITERIA

Criteria for determining the significance of noise impacts were developed based on information contained in the CEQA Guidelines Appendix F. Based on Appendix F of the CEQA Guidelines, energy impacts are considered to be significant if the project would result in any of the following:
1) Develop land uses and patterns that cause wasteful, inefficient, and unnecessary consumption of energy or construct new or retrofitted buildings that would have excessive energy requirements for daily operation.

The impact analysis focuses on the four sources of energy that are relevant to the proposed Project: electricity, natural gas, the equipment fuel necessary for Project construction, and the automotive fuel necessary for Project operations. Addressing energy impacts requires an agency to make a determination as to what constitutes a significant impact. There are no established thresholds of significance, statewide or locally, for what constitutes a wasteful, inefficient, and unnecessary consumption of energy for a proposed manufacturing land use. For the purposes of this analysis, the amount of electricity and natural gas are quantified and compared to that consumed by non-residential land uses (commercial and industrial) in the respective service provider’s service area as a whole (IID’s service area for electricity and the Southern California Gas Company’s service area for natural gas). The amount of fuel necessary for Project construction and operations is calculated and compared to that consumed in Imperial County.

B. METHODOLOGY

The analysis of electricity/natural gas usage is based on California Emissions Estimator Model (CalEEMod) modeling conducted by Ambient Air Quality and Noise Consulting (2018), which quantifies energy use for Project operations. The amount of operational automotive fuel use was estimated using the California Air Resources Board’s EMFAC2014 computer program, which provides projections for typical daily fuel usage in Imperial County. The amount of total construction-related fuel use was estimated using ratios provided in the Climate Registry’s General Reporting Protocol for the Voluntary Reporting Program, Version 2.1.

C. PROJECT IMPACTS AND MITIGATION MEASURES

Wasteful, Inefficient, and Unnecessary Consumption of Energy

Impact 7.0.1 The Project would use energy in association with operation of four cultivation and manufacturing facilities and ancillary structures. The impact associated with wasteful, inefficient and unnecessary consumption of energy would be **less than significant**.

Table 7.0-4 summarizes energy consumption associated with the proposed Project.

Table 7.0-4

<table>
<thead>
<tr>
<th>Energy Type</th>
<th>Annual Energy Consumption</th>
<th>Percentage Increase Countywide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity Consumption<sup>1</sup></td>
<td>58,698,267 kilowatt-hours</td>
<td>3.96%</td>
</tr>
<tr>
<td>Natural Gas Consumption<sup>1</sup></td>
<td>3,406 therms</td>
<td>0.00%</td>
</tr>
<tr>
<td>Automotive Fuel Consumption<sup>1</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Project Construction<sup>2</sup></td>
<td>36,355 gallons</td>
<td>0.59%</td>
</tr>
<tr>
<td>• Project Operations<sup>3</sup></td>
<td>40,588 gallons</td>
<td>0.03%</td>
</tr>
</tbody>
</table>

Sources: ¹Ambient Air Quality & Noise Consulting 2018; ²Climate Registry 2016; ³EMFAC2014 (CARB 2014).

Notes: The Project increases in electricity and natural gas consumption are compared with all of the non-residential buildings in Imperial County in 2016. The Project increases in automotive fuel consumption are compared with the countywide fuel consumption in 2017.

Electricity Usage

As shown in Table 7.0-4, the increase in electricity usage associated with operation of the Project would constitute an approximate 3.96 percent increase in the typical annual electricity consumption attributable
7.0 OTHER CEQA REQUIRED CONSIDERATIONS

to non-residential uses in the IID service area. Project increases in natural gas usage across the Southern California Gas Company service area would be negligible.

The Project would be required to comply with Title 24 building energy efficiency standards, which establish minimum efficiency standards related to various building features, including appliances, water and space heating and cooling equipment, building insulation and roofing, and lighting. Implementation of the Title 24 standards significantly reduce energy usage. As previously described, Calexico is located in a region with abundant sunshine, geothermal capacity, wind and other renewable potential.

IID currently purchases 28 percent of its electricity from renewable energy sources (biomass, geothermal, hydroelectric, and solar), according to the California Energy Commission (2017), and is projected to increase this percentage to 35 by the year 2020 (IID 2018b). IID continues to locate new renewable energy sources in order to achieve the statewide mandated goal of providing 50 percent of all energy from renewable energy resources by the year 2030 per the Renewables Portfolio Standard program described above. The CPUC implements and administers the Renewables Portfolio Standard program in collaboration and cooperation with the CEC and other agencies. The CPUC and the CEC monitor Renewables Portfolio Standard goals and results, including compliance reviews and enforcement, as necessary. These entities also require that electrical service providers prepare a renewable energy procurement plan and update that plan when necessary. The CPUC and the CEC review Renewables Portfolio Standard procurement plans for each electric utility provider and accept, reject, or modify the plans. Also, the CPUC and the CEC oversee electrical utility providers’ Renewables Portfolio Standard solicitations for renewable energy, review the results of solicitations submitted for approval by an electrical utility, and accept or reject proposed contracts based on consistency with the approved procurement plan.

According to IID, the Imperial Valley potentially contains 42,283 megawatts of renewable energy capacity (IID 2018b). In order to further facilitate a divestment in nonrenewable fossil fuel sources of energy in favor of renewable energy sources, IID is investing in new and innovative technologies in the energy industry as it works to develop a 20-megawatt hour battery energy storage system that will provide operational support across the balancing authority. The system will provide grid flexibility and increase reliability on the IID network by facilitating solar energy integration. Additionally, as a component of the Salton Sea Restoration and Renewable Energy Initiative, IID is planning on the development of up to 1,700 megawatts of new geothermal energy at the Salton Sea, which equates to enough energy to power more than one million homes. According to IID, there is more geothermal generating capacity in the Imperial Valley than anywhere else in the U.S. (IID 2018b). Geothermal energy resources provide a steady, reliable source of energy to the state electricity grid that is not subject to weather or seasonal fluctuations.

The California Independent System Operator (CAISO) manages the flow of electricity across the high-voltage, long-distance power lines (high-voltage transmissions system) that make up 80 percent of California’s and a small part of Nevada’s grid. This nonprofit public benefit corporation keeps power moving to and throughout California by operating a competitive wholesale electricity market, designed to promote a broad range of resources at lower prices, and managing the reliability of the electrical transmission grid. In managing the grid, CAISO centrally dispatches generation and coordinates the movement of wholesale electricity in California. As the only independent grid operator in the western U.S., CAISO grants equal access to 26,000 circuit miles of transmission lines and coordinates competing and diverse energy resources into the grid where it is distributed to consumers. Every five minutes, CAISO forecasts electrical demand and dispatches the lowest cost generator to meet demand while ensuring enough transmission capacity for delivery of power.
CAISO conducts an annual transmission planning process that uses engineering tools to identify any grid expansions necessary to maintain reliability, lower costs or meet future infrastructure needs based on public policies. CAISO engineers design, run and analyze complex formulas and models that simulate grid use under wide-ranging scenarios, such as high demand days coupled with wildfires. This process includes evaluating power plant proposals submitted for study into the interconnection queue to determine viability and impact to the grid. The long-term comprehensive transmission plan, completed every 15 months, maps future growth in electricity demand and the need to meet state energy and environmental goals that require the CAISO grid to connect to renewable-rich, but remote areas of the Western landscape. CAISO promotes energy efficiency through resource sharing. CAISO electricity distribution management strategy designed so that an area with surplus electricity can benefit by sharing megawatts with another region via the open market. This allows the dispatch of electricity as efficiently as possible. By maximizing megawatts as the demand for electricity increases, CAISO help keep electricity flowing during peak periods.

The Project would not be considered inefficient, wasteful, or unnecessary in terms of energy resources. While the increase in electricity usage as a result of the Project would constitute an approximate 3.96 percent increase in the typical annual electricity consumption attributable to non-residential uses in the IID service area, IID currently purchases 28 percent of its electricity from renewable energy sources and is projected to increase this percentage to 35 by the year 2020 (IID 2018b). The use of energy generated from renewable resources is inherently not wasteful since the energy used is infinite, on a human scale. As described, IID continues to locate new renewable energy sources in order to achieve the statewide mandated goal of providing 50 percent of all energy from renewable energy resources by the year 2030 per the RPS program described above. The Imperial Valley potentially contains 42,283 megawatts of renewable energy capacity (IID 2018b), and IID is currently working to further facilitate their divestment in nonrenewable fossil fuel sources of energy in favor of renewable energy sources.

In addition to IID’s efforts, the proposed Project is required to incorporate strategies for renewable energy and energy conservation into its design and operation through mitigation measure MM 4.2.1a j thru n, MM 4.2.1b and MM 4.6.1a thru MM 4.6.1g. These mitigation measures mandate that the Project incorporate energy-reducing features into building and site design in a manner that exceeds current building standards. Such measures must include, at a minimum, the use of high-efficiency HVAC and dehumidification systems. Mitigation measure MM 4.6.1c also requires the incorporation of energy-reducing practices to minimize peak energy loads, such as the staggering of grow room schedules over a 24-hour period so the minimum number of rooms run concurrently. Similarly, other energy-intensive processes such as extraction, cleaning or electric heating can be staggered and scheduled carefully with lighting cycles to minimize peak power demands. Scheduling overlapping or high-energy demand activities during the nighttime when outdoor air temperatures are lower will reduce the cooling load during peak energy demand time. The Project is further required to incorporate the use of alternative/renewable energy sources (e.g., solar photovoltaic, wind-power systems) to the maximum extent achievable through site and building design, incorporate light colored “cool” roofs and cool pavements, and divert on-site plant waste for composting or recycling.

Based on the continuing reduction of non-renewable sources of energy by IID coupled with the requirements of mitigation measures MM 4.2.1a j thru n, MM 4.2.1b and MM 4.6.1a thru MM 4.6.1g, Project impacts associated with inefficient, wasteful, or unnecessary consumption of building energy are considered less than significant.
7.0 OTHER CEQA REQUIRED CONSIDERATIONS

Gasoline Consumption

As indicated in Table 7.0-4, the Project’s gasoline fuel consumption during the one-time construction period is estimated to be 36,355 gallons of fuel, which would increase the annual construction-related gasoline fuel use in the county, by 0.59 percent. As such, Project construction would have a nominal effect on local and regional energy supplies. No unusual Project characteristics would necessitate the use of construction equipment that would be less energy-efficient than at comparable construction sites in the region or the state. Construction contractors would purchase their own gasoline and diesel fuel from local suppliers and would conserve the use of their supplies to minimize costs to their profits. Additionally, the Project is designed to balance the grading on site. This would substantially reduce the amount of potential haul trips associated with the import and export of soil for construction of the proposed Project, which in turn would reduce the amount of fuel required by the Project. Additionally, construction equipment fleet turnover and increasingly stringent state and federal regulations on engine efficiency combined with state regulations limiting engine idling times and require recycling of construction debris, would further reduce the amount of transportation fuel demand during Project construction. For these reasons, it is expected that construction fuel consumption associated with the Project would not be any more inefficient, wasteful, or unnecessary than other similar development projects of this nature.

As indicated in Table 7.0-4, Project operation is estimated to consume approximately 40,588 gallons of automotive fuel per year, which would increase the annual countywide automotive fuel consumption by 0.03 percent. The amount of operational fuel use was estimated using the California Air Resources Board’s EMFAC2014 computer program, which provides projections for typical daily fuel usage in Imperial County.

This analysis conservatively assumes that all of the automobile trips projected to arrive at the Project during operations would be new to Imperial County. The City of Calexico is served by Imperial Valley Transit (IVT), an inter-City fixed route bus system. The IVT provides fixed route bus service in Calexico as well as regional routes to other communities in the county. The Project would not result in any unusual characteristics that would result in excessive long-term operational automotive fuel consumption. Fuel consumption associated with vehicle trips generated by the Project would not be considered inefficient, wasteful, or unnecessary in comparison to other similar developments in the region. Therefore, Project impacts associated with inefficient, wasteful, or unnecessary consumption of fuel are considered less than significant.

Mitigation Measures

None required beyond those already identified in Section 4.2 Air Quality and 4.6 Climate Change and Greenhouse Gases.

Significance After Mitigation

Not Applicable.

7.0.4 CUMULATIVE SETTING, IMPACTS AND MITIGATION MEASURES

A. CUMULATIVE SETTING

The geographic extent of the cumulative setting for energy consumption consists of Imperial County and the IID energy service territory. The IID energy service territory covers 6,471 square miles, including all of Imperial County along with parts of Riverside and San Diego counties.

B. CUMULATIVE IMPACTS AND MITIGATION MEASURES

Contribution to Cumulative Energy Usage
Impact 7.0.2 The proposed Project, in combination with other proposed, approved and reasonably foreseeable projects in the City of Calexico, would not develop land uses and patterns that cause wasteful, inefficient, and unnecessary consumption of energy or that would have excessive energy requirements for daily operation. Therefore, impacts to energy usage are less than cumulatively considerable.

The cumulative projects in the City of Calexico have been identified in Table 3.0-1. Prior to approval, each cumulative project would be required to undergo discretionary approval and CEQA review which would address potential energy consumption impacts and identify necessary mitigation measures, where appropriate.

As noted in Impact 7.0.1, the proposed Project would not result in significant energy consumption impacts relative to the IID service area and would not be considered inefficient, wasteful, or unnecessary with regard to energy usage. Thus, the proposed Project’s contribution to cumulative energy usage within the IID service area would be less than cumulatively considerable. Likewise, cumulative impacts to energy use within the IID service area are less than cumulatively considerable as the proposed Project would constitute an approximate 3.96 percent increase in the typical annual electricity consumption attributable to non-residential uses in the IID service area. [Note: The need for a new IID substation to serve Phase 2 is a project-specific impact to the local electrical system not the overall IID service area].

Mitigation Measures

None required.

Significance After Mitigation

Not applicable.

7.0.5 SIGNIFICANT AND UNAVOIDABLE ENVIRONMENTAL EFFECTS

CEQA Guidelines Section 15126.2(b) requires an EIR to discuss unavoidable significant environmental effects, including those that can be mitigated but not reduced to a level of insignificance. In addition, Section 15093(a) of the CEQA Guidelines requires the decision-making agency to balance, as applicable, the economic, legal, social, technological, or other benefits, including region-wide or statewide environmental benefits of a proposed Project against its unavoidable environmental risks when determining whether to approve the project. The City of Calexico can approve a project with unavoidable adverse impacts if it adopts a “Statement of Overriding Considerations” setting forth the specific reasons for its decision. Based on the analysis provided in Sections 4.1 through 4.11, the proposed Trinity Cannabis Cultivation and Manufacturing Facility would result in a significant and unavoidable impact with regard to Generation of GHG Emissions/Conflict with Applicable Plan, Policy or Regulation Reducing GHGs (refer to Impact 4.6.1 in Section 4.6, Climate Change and Greenhouse Gases).

7.0.6 GROWTH-INDUCING IMPACTS

A. INTRODUCTION

CEQA Guidelines Section 15126.2[d] requires that an EIR evaluate the growth-inducing impacts of a proposed action. A “growth-inducing impact” is defined by the CEQA Guidelines as:

“...the way in which a proposed Project could foster economic or population growth, or the construction of additional housing, either directly or indirectly, in the surrounding environment. Included in this are projects which would remove obstacles to population growth... It is not assumed that growth in an area is necessarily beneficial, detrimental, or of little significance to the environment.”
7.0 OTHER CEQA REQUIRED CONSIDERATIONS

Growth inducement potential can result from a project either directly or indirectly. Direct growth inducement results from a project which can accommodate population growth such as residential subdivision or apartment complex. Indirect growth inducement potential can result from new permanent employment opportunities associated with commercial or industrial development. Likewise, indirect growth can occur if a project removes an obstacle to additional growth and development, such as removing a constraint on a required public service. Growth inducing projects provide resources (such as water) or infrastructure capacity (such as wastewater conveyance and treatment) that has previously been missing or inadequate to allow growth.

Environmental effects of growth inducement are considered indirect impacts. These indirect impacts or secondary effects of growth have the potential to result in significant, adverse environmental impacts. Potential secondary effects of growth include: increased traffic and noise; increased demand on other community and public services and infrastructure; adverse environmental impacts such as degradation of air and water quality; degradation or loss of plant and animal habitat; and conversion of agricultural and open space land to developed uses.

Growth inducement may constitute an adverse impact if the growth is inconsistent with the land use plans, growth management plans, and growth policies for the area affected. Local land use plans provide for land use development patterns and growth policies that allow for the orderly expansion of urban development supported by public utilities and services. A project that would induce unplanned growth or growth that conflicts with the local land use plans could indirectly cause additional adverse environmental and public services and utilities impacts. To determine if a growth-inducing project will result in adverse secondary effects, it is important to assess the degree to which the growth occurring as part of a project would or would not be consistent with applicable land use plans.

B. COMPONENTS OF GROWTH

The timing, location and extent of development and population growth in a community or region are based on multiple factors. Key variables include regional economic trends, market demand for residential and non-residential uses, land availability and cost, the availability and quality of transportation facilities and public services, proximity to employment centers, the supply and cost of housing, and regulatory policies or conditions. The general plan is the primary mechanism used to regulate development and growth in California as it is used to define location, type, and intensity of growth.

C. PROJECT-SPECIFIC GROWTH-INDUCING IMPACTS

Growth Inducement Potential

As described in Chapter 2.0, Project Description, the Trinity Cannabis Cultivation and Manufacturing Facility proposes to build and operate four cannabis cultivation and manufacturing facilities totaling 167,241 sq. ft. The project would be built in two phases. Phase 1 includes tenant improvements on the existing 33,112 sq. ft. structure at 2421 Enterprise Boulevard, carve-out of a transportation and distribution facility parcel and a 1,056 sq. ft. transportation office. Phase 2 would include three buildings totaling 130,550 sq. ft. of cultivation and manufacturing as well as a 2,200 sq. ft. administration building and a 323 sq. ft. guard house.

As described in Section 4.1, Land Use, the proposed Project site is located an industrial portion of the City of Calexico within the COZ. The site encompasses five existing parcels (refer to Table 2.0-1 in Chapter 2.0) with a General Plan designation of Industrial. The parcels are zoned Industrial and Commercial Highway.

The Applicant for each proposed cultivation and manufacturing facility as well as the Transportation and Distribution Facility will be required to enter a Developer Agreement with appropriate fiscal mitigation
measures and terms as approved by the City Council. In addition, the Project requires one parcel carve-
out of APN 059-343-018 to create a new parcel for the Transportation and Distribution Facility.

By its nature as cannabis cultivation and manufacturing facility with a transportation component, the
Project would not directly induce growth. Instead, the Project would diversify Calexico’s economic and
industrial base, provide approximately 78 jobs, increased revenue from taxes and the associated
multiplier effect.

Infrastructure

Adequate electrical capacity is available to serve Phase 1 of the Project. However, in order for the IID to
provide electricity to Phase 2, a new 25-MW substation must be built.

As a general rule, extension of utilities or increased capacity of infrastructure has the potential to result
in growth inducement. Any such improvements not only accommodate a project for which they are built
but also for any other projects in the surrounding area that would be proposed or become feasible as a
result of the availability of new infrastructure.

As shown in Table 3.0-1 in Chapter 3.0, Introduction to the Analysis and Assumptions Used, cumulative
projects are proposed in the City that would require electrical service. This includes the Town Center
Industrial Park located just to the west of the proposed Project. The City anticipated development of
cannabis-oriented businesses in this portion of the City in adopting the COZ. Thus, implementation of the
proposed Project would not contribute to growth in this area of the City, but rather would be part of
planned growth envisioned by the City.

Housing

No housing is proposed as part of the Trinity Cannabis Cultivation and Manufacturing Facility nor is the
Project anticipated to induce growth in the City or other regions. The number of jobs created
(approximately 78) are anticipated to be met through the local workforce and help to reduce local
unemployment.

Roadways

The proposed Project is surrounded by existing roadways and does not include extending the existing
roadway system. Sunset Boulevard is currently a paved roadway but does not meet City standards and is
therefore barricaded along West Cole Boulevard. Prior to removal of the barricades along West Cole
Boulevard, improvements to Sunset Boulevard to meet City standards would be required.

D. SECONDARY EFFECTS OF GROWTH

The Trinity Cannabis Cultivation and Manufacturing Facility would expand industrial uses in a portion of
the City already characterized by these uses. Secondary effects of the proposed Project would include the
creation of increased traffic, noise, and air emissions during construction and operation. However, these
effects would not be greater than what was anticipated for this industrial area of the City.

7.0.7 SIGNIFICANT IRREVERSIBLE ENVIRONMENTAL CHANGES

A. INTRODUCTION

CEQA Guidelines Section 15126.2(c) describes irreversible environmental changes as follows:

Uses of nonrenewable resources during the initial and continued phases of the project may be irreversible since a large commitment of such resources makes removal or nonuse thereafter unlikely. Primary impacts and, particularly, secondary impacts (such as highway improvement which provides access to a
7.0 OTHER CEQA REQUIRED CONSIDERATIONS

previously inaccessible area) generally commit future generations to similar uses. Also irreversible damage can result from environmental accidents associated with the project. Irretrievable commitments of resources should be evaluated to assure that such current consumption is justified.

Buildout of the proposed Project would result in retro-fit of an existing industrial building and construction of three new buildings to accommodate cultivation and manufacturing of cannabis.

Development of the Project would irretrievably commit building materials and energy to the construction and operation of the Trinity Cannabis Cultivation and Manufacturing Facility including tenant improvements on the existing 33,112 sq. ft. structure at 2421 Enterprise Boulevard, carve-out of a transportation and distribution facility parcel and a 1,056 sq. ft. transportation office, construction of three buildings totaling 130,550 sq. ft. of cultivation and manufacturing as well as a 2,200 sq. ft. administration building and a 323 sq. ft. guard house. Renewable, nonrenewable, and limited resources that would likely be consumed as part of the development of the proposed Project would include, but are not limited to, oil, gasoline, lumber, sand and gravel, asphalt, water, steel, and similar materials. Energy would also be irreversibly consumed, both as part of the construction and during operation of the proposed Project.

7.0.8 MANDATORY FINDINGS OF SIGNIFICANCE

State CEQA Guidelines Section 15065 identifies four mandatory findings of significance that must be considered as part of the environmental review process of a project. These findings are identified below with an analysis of the Project’s relationship to these findings.

1) The project has the potential to substantially degrade the quality of the environment; substantially reduce the habitat of a fish or wildlife species; cause a fish or wildlife population to drop below self-sustaining levels; threaten to eliminate a plant or animal community; substantially reduce the number or restrict the range of an endangered, rare or threatened species; or eliminate important examples of the major periods of California history or prehistory.

The Project’s impacts on biological resources and cultural resources are evaluated in Section 4.3, Biological Resources, and Section 4.4, Cultural Resources, of this DEIR, respectively. Both sections identify mitigation measures to reduce impacts to these resources. Upon implementation these of these measures, impacts to biological and cultural resources will be less than significant.

2) The project has potential to achieve short-term environmental goals to the disadvantage of long-term environmental goals.

The Project would result in short-term air quality impacts as a result of construction and long-term significant and unavoidable greenhouse gas emissions. As discussed in Section 4.3, Climate Change and Greenhouse Gases (GHGs), annual operational GHG emissions generated by the proposed Project would total approximately 198,916 MTCO$_2$e/year. As indicated, a majority of the emissions generated (roughly 99.7%) would be attributable to energy usage. GHG emissions from mobile sources constitute a majority of the remaining operational GHG emissions. Operational GHG emissions associated with non-stationary sources (excluding the generators) would exceed the threshold of 900 MTCO$_2$e/year and would be considered to have a potentially significant impact on the environment, which could conflict with GHG-reduction planning efforts. Mitigation measures are identified to reduce operational emissions, but the measures would not be sufficient to reduce the emissions below the 900 MTCO$_2$e/year threshold. Therefore, the proposed Project would result in a significant and unavoidable impact to long-term environmental goals.
3) The project has possible environmental effects that are individually limited but cumulatively considerable. “Cumulatively considerable” means that the incremental effects of an individual project are significant when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects.

The Project’s potential cumulative impacts are summarized in Chapter 5.0 of this DEIR. Sections 4.1 through 4.11 evaluate cumulative impacts related to each resource and technical discussion area and identify mitigation measures addressing each cumulatively considerable impact, if necessary. Upon implementation of these measures, cumulative impacts will be less than considerable, with the exception of operational GHG emissions which would remain significant and unavoidable.

4) The environmental effects of a project will cause substantial adverse effects on human beings, either directly or indirectly.

Potential adverse impacts on humans are discussed and evaluated in Section 4.2, Air Quality, Section 4.6 Climate Change and Greenhouse Gases, Section 4.7, Hazards and Human Health, and Section 4.9, Noise. As appropriate, each section identifies mitigation measures to reduce significant impacts associated with these resource areas. In addition, the proposed Project would remain subject to applicable local, state, and federal regulations intended to avoid adverse effects on humans. The Trinity Cannabis Cultivation and Manufacturing Facility would comply with all required regulatory/legal requirements, and project-specific conditions of approval, and would therefore result in less than significant impacts on humans with regard to air quality, hazards and human health, and noise. With regard to Climate Change and Greenhouse Gases, impacts would remain significant and unavoidable due to the Project’s exceedance of the 900 MTCO$_2$e/year operational GHG threshold.